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Abstract

The stress singularities in angular corners of plates of arbitrary thickness with various boundary conditions subjected
to in-plane loading are studied within the first-order plate theory. By adapting an eigenfunction expansion approach a
set of characteristic equations for determining the structure and orders of singularities of the stress resultants in the
vicinity of the vertex is developed. The characteristic equations derived in this paper incorporate that obtained within
the classical plane theory of elasticity (M.L. Williams’ solution) and also describe the possible singular behaviour of the
out-of-plane shear stress resultants induced by various boundary conditions.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Stress analysis based on the classical plane stress theory of elasticity occasionally leads to misleading re-
sults due, in part, to the fact that it is an approximate theory even when the plane stress equations are
solved exactly. A case in point relates to an angular corner with the vertex angles between n and 2.
The lateral contraction of the plate at the vertex is unbounded. Near a vertex, the gradients of the in-plane
stress components are very large. If the through-the-thickness contraction due to the Poisson effect is
allowed to develop without resistance, which is the case in the plane stress theory of elasticity, then an
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extremely large transverse shear strain arises. Associated with this strain, of course, is a transverse shear
stress, which may be too large in magnitude to permit the basic assumption of the classical plane stress the-
ory of elasticity (Yang and Freund, 1985).

Many papers have addressed stress singularities at angular corners or finite opening cracks. Williams and
his co-workers first used the eigenfunction expansion approach to comprehensively investigate the corner
stress singularities induced by various boundary conditions for isotropic and orthotropic plates within the
generalized plane stress theory (Williams, 1952; Williams, 1957; Williams and Chapkis, 1958). Dempsey
and Sinclair (1979) proposed a new form of Airy stress function to re-examine the stress singularities in iso-
tropic elastic plates in extension. Hein and Erdogan (1971) and Bogy and Wang (1971) used the Mellin
transformation to study the stress singularities in bi-material wedges, while Dempsey and Sinclair (1979)
used an Airy stress function for the same purpose. Using a complex potential approach Carpenter
(1985) examined the form of the eigenvector solution for a general corner or finite opening crack and devel-
oped an overdetermined collocation algorithm to calculate the coefficients associated with eigenvectors.
Sinclair (1999) studied logarithmic stress singularities resulting from various boundary conditions in angu-
lar corners of plates in extension. In the frame of a high-order plate theory Huang (2004) studied corner
singularity for a sector plate in extension by adapting an approach of Hartranft and Sih (1969) for
three-dimensional problems and concluded that the characteristic equations for angular corners in exten-
sion are identical to those given by Williams for plane strain conditions. The listed above are only key ref-
erences. No attempt has been made here to give a complete bibliography on the subject, or to analyse
critically the works referred to, or to discuss the priority of the results mentioned.

The aim of this paper is to study the corner singularities for a sector plate within the first-order plate
theory by using stress resultant and displacement functions (Kotousov and Wang, 2002a; Kotousov,
2004) and adapting the eigenfunction expansion approach of Williams (1952). The first-order plate theory,
also known as the Kane and Mindlin theory, was first proposed in their work on high frequency extensional
vibrations (Kane and Mindlin, 1956). The governing equations of this theory include the through-the-thick-
ness stress components and retain the simplicity of a two-dimensional model. Recently, a number of three-
dimensional analytical solutions have been developed within this theory (Kotousov and Wang, 2002a,
2002b; Kotousov, 2004, 2005). It was shown that these solutions mirror non-singular classical plane stress
and plane strain solutions of the theory of elasticity as limiting cases of very thin and very thick plates, cor-
respondingly. It also was found in a number of careful numerical studies that these solutions obtained with-
in the first-order plate theory also agree well with results obtained using the three-dimensional finite element
method (Chang et al., 2001; Berto et al., 2004).

2. Basic equations

For convenience, the basic equations of the first-order plate theory for extensional deformations will be
summarized next. The three-dimensional displacements in this theory are taken in the form

z
Mx:ux(xvy)v uyzuy(x,y), uZ:ZW(xLy)? (1)

which are also known as the Kane and Mindlin assumption and 2/ is the plate thickness.
The stress resultants are defined by

h
(Nxx;N){yaszany) = / (Gxxv Oy, 02z, ‘ny) dZv (Za)
—h

(Rx,Ry):[ (Taxs Tzy)z dz. (2b)

h
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It is seen that stress resultants N,,, N,, and N,, are the usual forces per unit length, and V.. is 2/ times
the average transverse normal stress. R, and R, are components of “‘pinching’” shear, playing a role similar
to that of the transverse shear force in the corresponding equilibrium equations of flexible plates.

The substituting Eq. (1) into the classical variational equation of the 3D theory of elasticity (Yu, 1995)
and carrying out integration with respect to z over the thickness of the plate leads to the governing equa-
tions of the first-order plate theory (Kane and Mindlin, 1956). By introducing a stress resultant function @,
similar to the Airy’s stress function in the classical plane theory of elasticity, in polar co-ordinates

10 100
N;'r_ﬁ@+;@7 (3a)
a2
Nop =52 (3b)
13°0 100
Ny =120 ¢ (3¢)

Forop P
and the governing equations of the first-order plate theory can be reduced to two equations (Yang and
Freund, 1985), the first one is

6(1+v) vl +v)
7 W= 2

h h°E
which represents the equilibrium equation in the out-of-plane direction (z-direction, see Fig. 1). The second
governing equation is
2vE
1 —2
which is the strain compatibility equation. Here £ and v are Young modulus and Poisson’s ratio, respec-
tively and V? is the two-dimensional Laplace operator.

Now the problem is fully determined by two governing equations for the stress function @ (4a) and the

out-of-plane function w (4b). This system can be decoupled and transformed into a single equation with
respect to either @ or w as

Viw — Vo, (4a)

Vi =

Vw, (4b)

Viw — K2V = 0, (5a)
Vo — >V =0, (5b)
6
where Kk = — i

Fig. 1. Coordinate system for plate sector.
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Further, using a harmonic displacement function ¥(V*¥ = 0), the in-plane displacements in polar co-
ordinates can be written as

2Eh Rl 1 ov

T o Ty % (62)
2Eh 109 1 ,ov¥
T "7 e Ty (6b)
o[ oY
= (1 =V \WV2p — — | r——
2vEw = (1 —v*)V° @ 6r<r6¢>' (6¢)

The harmonic displacement function ¥ can be determined in terms of the stress-resultant function
P as

a aql 2 4
< 6¢> V(P——V (6d)
Finally, the shear stress resultant can be expressed as
ERW*  ow
R=———
31 +v) o’ (72)
EW 10w
Ry=——— 7b
T 3(1+v) rog’ (7b)
and the normal out-of-plane stress resultant
N.. = 2N + 2Ew, (8)
where

N = (Nrr+N¢¢)/2.

3. Approach

Consider a plane angular sector with the vertex angle 2 and thickness 2/ as shown in Fig. 1. Following
to the classical eigenfunction expansion approach developed by Williams (1952), let us assume solution for
w and @ in the form

(f)) = ZW}1+2k(r7 ¢)7 (93.)
k=0

= i Py (r, (9b)
k=0

= W, (9¢c)
k=0

where
wi(r, ¢) = Ag(or’ > — 1,5 (kr) ) cos(Z — 2)¢ + Byl ;(kr) cos i

+ A (o™ — I, 5 (xr)) sin(4 — 2)¢ + Byl ;(kr) sin A¢p, (10a)
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B 2vE 2 o 7 7 _
&,(r,p) = Ay =) (o I, »(xr))cos(2—2)p — 4y 20 —T) - cos(A—2)¢
— 2vE . — ok i
+Akm ("2 — I,_5(kr)) sin(A — 2)¢ — 4, mr/» sin(/ — 2)¢
2vE — 2vE .
+ Bk m[i(}ci") Ccos )\,¢ + Bk m[i(l(i’) sim A¢,
+ Cyr* cos A + Crr* sin 1, (10b)
and

_ 20F 20E ;

Y, =A———2 L —2)p — Ay —— 1 2sin(A — 2 1
. 8) =T gy oSl = 20— Ay (- 2)6, (10c)

where Ay, Ay, By, By, Cr and C; are constants to be found from boundary conditions.

Each term in these functions w;, @; and ¥; represents a linear independent solution of the governing
Egs. (4) or (5) and (6d) having the same asymptotic behaviour at r — 0 and resulting in the following gen-
eral asymptotic behaviour of these functions:

O(r,p) ~ r, w(r, ¢) ~ 7 and V(r,d) ~ 2 (11)

In Eq. (10) a = #71)(’6/2)/172 leading to the asymptotic behavior (11), I'(*) is the Gamma function, 7,(*) is
the modified Bessel function of the first kind and Z is a dummy variable.

It is noted that the odd terms (such as u+ 2k + 1) in the expansion of functions w, ¢ and ¥ will not
generate any additional solution; therefore, they are not considered in the representation of these functions
9).

Boundary conditions along radial edges require:

For free—free edges:

N¢¢=O, Nr(p:O and R¢=0at¢:iﬂ, (122[)
or using (3)

Rl 0109
_O —

o _

— = el =4 12
3 Sy 0 and 30 0at ¢ i (12b)
respectively.
For clamped—clamped edges:
u, =0, uy=0 and w=0at ¢==f, (13a)

first two conditions can be rewritten using (6) as
0P 1 o¥

109 1 ,o0%

For clamped-free edges:
u, =0, uy=0 and w=0at ¢ =0, (14a)
N¢¢=O, N,(/):O and R¢:Oat¢:—ﬁ, (14b)

which also can be rewritten in terms of functions w(r, ¢), @(r, ¢) and ¥(r, ¢) similar to the above Egs. (12b),
(13b) and (13c).
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By using the well-known representation of Bessel functions into the power series (Gradshteyn and
Ryzhik, 1981)

00 /2)2m+)
; m!I'(m+2+1)’
after substituting of Egs. (9) and (10) into the boundary conditions (12)—(14) and requiring that the coef-
ficients of r with different orders equal to zero one gets a system of recurrent equations for the coefficients
Ak, Zk, Bk, Ek, Ck and Ek.

To investigate the structure and orders of singularities at the angular corner within the first-order plate
theory, one needs the asymptotic form of the stress resultants. The singular behaviour of the stress resul-
tants is determined from w,, ®, and ¥, (at k = 0) corresponding to the lowest order of r, therefore, the
solution for k£ > 0 in (9) will not be considered here.

Substituting w,,, @, and ¥, given by Egs. (10) into the boundary conditions (12)-(14) one gets a system
of six simultaneous equations for six unknown constants 4, 49, By, By, Cop and Cy. These equations are
homogeneous and a meaningful solution can be obtained if the determinants of the coefficient matrices
are each equal to zero. Then, the characteristic equation for u can be established. After some algebraic
manipulations with the coefficients of the system and Gamma function, the characteristic equations can
be written in the following simple form:

For free—free edges:

As(p) = Ci(sin2(u — 1)B + (u — 1) sin 2f) sin pp, (15a)

Ad(i) = Cy(sin2(e — 1) — (s — 1) sin 2) cos . (15b)
For clamped—clamped edges:

As(u) :C2<Sin2(u— 1)/3—&-3#:41V sin2ﬂ> cos ufs, (16a)

Ap) = C2<sin2(,u— 1)ﬁ+3":41v sin2ﬁ> sin up, (16b)

where Ag(u) and A 4(u) correspond to the symmetric and anti-symmetric loading cases, respectively.
For clampedfree edges:

3—4y 3—4y (17)

: 401 —v)’ —1)’sin2
Aw) = C3<sm22(,u _ppo M=) (e 1) sin ﬁ> cos 2uf,
where C;, C, and C are functions of material constants and p such that at u> 0 C # 0 except when u=1.
The details of the derivation of Eqgs. (15)—(17) will be omitted. Note that, Eq. (16a) was also obtained in
(Huang, 2004) using a different approach based on the expansion of the displacement functions; however
the additional term cos(uf) was discarded from further considerations as not giving any singularities at the

vertex of the wedge.

4. Analysis

Expressions in (-) brackets in Egs. (15)—(17) are exactly the same as given by Williams (1952) for the cor-
responding plane strain problem of the wedge. It was shown in work by Williams (1952) and many other
papers that the roots of these equations such that Re x> 1 produce an admissible solution for this problem.
Furthermore, a value of y such that 1 < Reu <2 produces unbounded in-plane stress resultant behaviour at
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the vertex of the wedge. Nevertheless, no singularities occur for the shear stress resultants R, and R, which
are, in this case, proportional to .

This type of singularities was investigated exhaustively in many papers and will not be further analysed
here. The additional terms in the characteristic equations cos(uf3), sin(uf5) and cos(2uf) can be substituted
back into the system of homogeneous equations for the determining the coefficients 4, 4y, By, By, Co and
C, to obtain a solution for another type of singular behaviour.

The out-of-plane displacement function w and the stress resultant function ¢ are found to be

For free—free edges:

wy(r, @) = Bol ,(xr) cos g, (18a)
2vE it A
(p#(r, d)) —Bo(l_vz)KZ<I#(Kr) _Zﬂlw> COSM¢, (18b)
for symmetric loading corresponding to the roots of sin(uf) =0, and
wyu(r, ) = Bol ,(kr) sin ud, (18c)
— 2vE Kt r* .
(p”(l", ¢) Bom<lu(lﬂ’) _Z_Hm> sm,u(j) (lgd)

for anti-symmetric loading corresponding to the roots of cos(ufs) = 0.
For clamped—clamped edges:

wy(r, @) = Bol,(kr) cos e, (19a)
— 2vE KH rt
() =By——— (1 - 1
ll(ra d)) BO (1 — VZ)KZ < H(Kr) oM F(,u ¥ 1)> cos :ud)v ( 9b)
for symmetric loading corresponding to the roots of cos(uf) =0, and
W#(r7 ¢) = BOIM(KT) Sin ﬂ¢, (190)
2vE KH rt
(] =By———F—(1 —— ———— )i 1
N(ra ¢) 0 (1 — VZ)KZ < lt(Kr) oK F(,u I 1)> SIHM¢ ( 9d)

for anti-symmetric loading corresponding to the roots of sin(uf) = 0.
For clamped—free edges:

wy(r, @) = Bol ,(rcr)(sin uep — ctg(up) cos ug), (20a)
2vE KH rt .
P,(r,¢) = Bo =)y <1u(’<”) kT W>(Sln e — ctg(up) cos ud) (20b)

corresponding to the roots of cos(2uf) = 0.

For all cases the displacement function ¥, is zero.

Because solutions (18)—(20) were derived from the general solution (10) they obviously satisfy the gov-
erning Eqs. (4), (5) and (6d). It is readily seen that the boundary conditions (12)—(14) for w and R, are also
satisfied exactly. The stress resultant function @(r, ¢) and the out-of-plane displacement function w(r, ¢) in
the solutions (18)—(20) have the asymptotic behaviour as

D, (r, ) ~ 2 and wyu(ry @) ~ 1, (21)

leading to the following asymptotic behaviour of the stress resultants, out-of-plane displacement function
and in-plane displacements:
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R, and Ry~ r", (22a)
W7N,.r,Nr¢7N¢¢ and sz NI"N, (22b)
u, and wuy ~ (22¢)

It means that the boundary conditions (12)—(14) for the stress resultants N4, NV, and the in-plane displace-
ment components u, and u, in the above solutions (18)—(20) are also satisfied asymptotically in terms of
=2 and !, respectively. However, these solutions produce additional terms of O(r*) order for the stress
resultants and O(* ™ ') order for the in-plane displacements, which can be negated by the higher order
terms (k > 0) in the expansion of functions w, @ and ¥ (Eq. (9)) leading to the system of recurrent equations
as described above.

Now we investigate the roots of the additional terms in the characteristic equations. The positive roots
(1> 0) of sin ufs, cos uf and cos(2uf) give an admissible solution for this problem, as the elastic energy will
stay finite at the vertex sector (Yu, 1995) with the stress resultants having the asymptotic behaviour (22).

The positive roots of sin uf5, cos uff and cos2uf; are

w=(n+1)u/p, (23a)
= (2n+)r/(2B), (23b)
and
= (2n+1)m/(4B), (23¢)

respectively, with n =0,1,2...

The unbounded behaviour of the out-of-plane shear stress resultants R, and R, at the vertex sector will
occur when 0 < y <1, which is possible for n = 0 for the anti-symmetric mode of loading of the wedge with
free—free boundary conditions and symmetric mode of loading for clamped-clamped boundary conditions
when f > /2 (or the vertex angle larger than m). The characteristic equation and roots of this equation are
defined as

1= n/(2p). (24)

For clamped—free boundary condition we have two different equations giving an admissible singular solu-
tion for the problem under consideration generated by » = 0 and by n =1 in (23c) for the vertex angle be-
tween 0 and 27:

1=m/(4p), (25a)

and
p=(3m)/(4p). (25b)
These Eqgs. (25a) and (25b) result into the singular behaviour of the out-of-plane shear stress resultants
when B> /4 and B> 3n/4, respectively. It means that two different modes of singular behaviour of the

shear stress resultants can take place at > 3n/4 and only one mode for n/4 < 8 < 3n/4. Meanwhile no sin-
gularities occur for the in-plane stress resultants N,., Ny4 and N, in this case.

5. Conclusion

By adapting the eigenfunction expansion approach (Williams, 1952) and using the stress resultant and
displacement functions for the first order plate theory (Kotousov, 2005) a set of characteristic equations
for determining the structure and orders of singularities in angular corner of arbitrary thickness with var-
ious boundary conditions is developed. The characteristic equations derived in this paper differ from
Williams’ results and are not related to the thickness of the plate.
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Similar to the Williams® solution obtained within the plane theory of elasticity, for free—free and
clamped—clamped boundary conditions the characteristic equations can be represented as a product of sym-
metric and anti-symmetric parts corresponding to the symmetric and anti-symmetric loading cases of the
wedge, respectively. Further, all characteristic equations can be decomposed into the characteristic equa-
tions describing in-plane singular behaviour and additional equations, which can also produce an admissi-
ble singular solution for the problem under consideration. The first type of singularities does not lead to
unbounded out-of-plane shear stress resultants. In its turn, for the second type of singularities the in-plane
stress resultants stay finite while the out-of-plane shear stress resultants are unbounded. It was shown in
this paper that the second type of singularities is possible for the anti-symmetric mode of loading for
free—free boundary conditions and the symmetric mode of loading for clamped-clamped boundary condi-
tions with the vertex angle larger than n. In the case of clamped—free boundary conditions the shear stress
resultant singular behaviour is possible for the vertex angle larger than n/2. In a broad sense, it means that
the singular fields in the vicinity of the vertex will be controlled by two or three (for clamped—free boundary
conditions and the vertex angle larger than 67/4) uncoupled singular modes, the in-plane mode producing
singular behaviour of the in-plane stress resultants and the out-of-plane mode producing a singular behav-
iour of the out-of-plane shear stress resultants. Each of these modes, obviously, can be characterized by a
generalized stress intensity factor. This result represents a major finding of this paper.
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